16.为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型①$y={C_1}{x^2}+{C_2}$与模型;②$y={e^{{C_3}x+{C_4}}}$作为产卵数y和温度x的回归方程来建立两个变量之间的关系.
温度x/°C20222426283032
产卵数y/个610212464113322
t=x24004845766767849001024
z=lny1.792.303.043.184.164.735.77
$\overline x$$\overline t$$\overline y$$\overline z$
26692803.57
$\frac{{\sum_{i=1}^7{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$$\frac{{\sum_{i=1}^7{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$$\frac{{\sum_{i=1}^7{({z_i}-\overline z)({x_i}-\overline x)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$$\frac{{\sum_{i=1}^7{({z_i}-\overline z)({t_i}-\overline t)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$
1157.540.430.320.00012
其中${t_i}={x_i}^2$,$\overline t=\frac{1}{7}\sum_{i=1}^7{t_i}$,zi=lnyi,$\overline z=\frac{1}{7}\sum_{i=1}^7{z_i}$,
附:对于一组数据(μ1,ν1),(μ2,ν2),…(μn,νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:$β=\frac{{\sum_{i=1}^n{({μ_i}-\bar μ)({ν_i}-\bar ν)}}}{{\sum_{i=1}^n{{{({μ_i}-\bar μ)}^2}}}}$,$α=\bar ν-β\bar μ$
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1,C2,C3,C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为${R_1}^2=0.82,{R_2}^2=0.96$.,请根据相关指数判断哪个模型的拟合效果更好.
 0  240683  240691  240697  240701  240707  240709  240713  240719  240721  240727  240733  240737  240739  240743  240749  240751  240757  240761  240763  240767  240769  240773  240775  240777  240778  240779  240781  240782  240783  240785  240787  240791  240793  240797  240799  240803  240809  240811  240817  240821  240823  240827  240833  240839  240841  240847  240851  240853  240859  240863  240869  240877  266669 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网