20.环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数).现随机抽取20天的指数(见下表),将指数不低于8.5视为当天空气质量优良.
(Ⅰ)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.
| 天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 空气质量指数 | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
| 天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 空气质量指数 | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.
14.若X是离散型随机变量,P(X=x1)=$\frac{2}{3}$,P(X=x2)=$\frac{1}{3}$,且x1<x2,又已知E(X)=$\frac{4}{3}$,D(X)=$\frac{2}{9}$,则x1+x2的值为( )
| A. | $\frac{5}{3}$ | B. | $\frac{7}{3}$ | C. | 3 | D. | $\frac{11}{3}$ |
12.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有( )
| A. | ${A}_{9}^{9}$种 | B. | ${A}_{12}^{8}$种 | C. | 8${A}_{8}^{8}$种 | D. | 2${A}_{8}^{8}$${A}_{4}^{4}$种 |
11.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的标报名方法共有( )
0 240400 240408 240414 240418 240424 240426 240430 240436 240438 240444 240450 240454 240456 240460 240466 240468 240474 240478 240480 240484 240486 240490 240492 240494 240495 240496 240498 240499 240500 240502 240504 240508 240510 240514 240516 240520 240526 240528 240534 240538 240540 240544 240550 240556 240558 240564 240568 240570 240576 240580 240586 240594 266669
| A. | 4种 | B. | 16种 | C. | 64种 | D. | 256种 |