题目内容
15.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前6次都未成功,后4次都成功的概率为(1-p)6•p4.分析 由题意知符合二项分布概率类型,由概率公式计算即可.
解答 解:每次试验的成功率为p(0<p<1),
重复进行10次试验,其中前6次都未成功,后4次都成功,
所以所求的概率为(1-p)6•p4.
故答案为:(1-p)6•p4.
点评 本题主要考查n次独立重复实验中恰好发生k次的概率,是基础题.
练习册系列答案
相关题目
10.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y与x之间的线性回归方程为( )
| A. | ${\;}_{y}^{∧}$=x-1 | B. | ${\;}_{y}^{∧}$=x+2 | C. | ${\;}_{y}^{∧}$=2x+1 | D. | ${\;}_{y}^{∧}$=x+1 |
20.环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数).现随机抽取20天的指数(见下表),将指数不低于8.5视为当天空气质量优良.
(Ⅰ)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.
| 天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 空气质量指数 | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
| 天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 空气质量指数 | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.