16.设等差数列{an}的前n项和为Sn,$\overrightarrow{a}$=(a1,1),$\overrightarrow{b}$=(1,a10),若$\overrightarrow{a}$•$\overrightarrow{b}$=20,且S11=121,bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,则数列{bn}的前40项和为( )
| A. | $\frac{72.8}{81}$ | B. | $\frac{182}{81}$ | C. | $\frac{364}{81}$ | D. | $\frac{91}{81}$ |
15.已知数列{an+81}是公比为3的等比数列,其中a1=-78,则数列{|an|}的前100项和为( )
| A. | $\frac{{{3^{101}}-16203}}{2}$ | B. | $\frac{{{3^{100}}-15387}}{2}$ | C. | $\frac{{{3^{101}}-15387}}{2}$ | D. | $\frac{{{3^{100}}-16203}}{2}$ |
14.若a<0<b,且$\frac{1}{a}>-\frac{1}{b}$,则下列不等式:①|b|>|a|;②a+b>0;③$\frac{b}{a}+\frac{a}{b}<-2$;④$a>2b-\frac{a^2}{b}$中,正确的不等式有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
12.设二次函数f(x)=x2+ax+b,若对任意的实数a,都存在实数$x∈[{\frac{1}{2},2}]$,使得不等式|f(x)|≥x成立,则实数b的取值范围是( )
| A. | $({-∞,-\frac{1}{3}}]∪[{2,+∞}]$ | B. | $({-∞,-\frac{1}{3}}]∪[{\frac{1}{4},+∞})$ | C. | $({-∞,\frac{1}{4}}]∪[{\frac{9}{4},+∞})$ | D. | $({-∞,-\frac{1}{3}}]∪[{\frac{9}{4},+∞})$ |
11.定义min$\left\{{a,b}\right\}=\left\{{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}}$,若实数x,y满足$\left\{{\begin{array}{l}{x-y-3≤0}\\{3x-y-9≥0}\\{y≤3}\end{array}}$,设z=min{2x-y+4,x+y+6},则z的取值范围是( )
0 239716 239724 239730 239734 239740 239742 239746 239752 239754 239760 239766 239770 239772 239776 239782 239784 239790 239794 239796 239800 239802 239806 239808 239810 239811 239812 239814 239815 239816 239818 239820 239824 239826 239830 239832 239836 239842 239844 239850 239854 239856 239860 239866 239872 239874 239880 239884 239886 239892 239896 239902 239910 266669
| A. | [9,11] | B. | [9,12] | C. | [9,13] | D. | [9,14] |