2.若集合A={x|x>$\frac{1}{2}$或x<0},集合B={x|(x+1)(x-2)<0},则A∩B等于( )
| A. | {x|$\frac{1}{2}$<x<2} | B. | {x|-1<x<0或$\frac{1}{2}$<x<2} | C. | {x|-1<x<$\frac{1}{2}$} | D. | {x|0<x<$\frac{1}{2}$或1<x<2} |
20.椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{y}^{2}}{b}$-y2=1(b>0)有相同的焦点F1、F2,若P为两曲线的一个交点,则△PF1F2的面积为( )
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
19.已知△ABC的面积为S,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=S,则tan2A的值为( )
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
18.在△ABC中,命题p:“B≠60°”,命题q:“△ABC不是等边三角形”,那么p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分又不必要条件 |
16.设G是△ABC的重心,点E是AG的中点,若$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BG}$•$\overrightarrow{CG}$=-1,则$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是( )
| A. | -$\frac{7}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{13}{8}$ |
15.角A、B、C为△ABC的三个内角,函数f(x)=2sin(x-A)cosx+sin(B+C)(x∈R)的图象关于直线x=$\frac{5π}{12}$对称,则A=( )
| A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
14.直线m:kx+y+4=0(k∈R) 是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线n,则直线n被圆C所截得的弦长为( )
| A. | $\sqrt{14}$ | B. | $\sqrt{2}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |
13.设F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=2b,(O为坐标原点),则该双曲线的离心率为( )
0 239291 239299 239305 239309 239315 239317 239321 239327 239329 239335 239341 239345 239347 239351 239357 239359 239365 239369 239371 239375 239377 239381 239383 239385 239386 239387 239389 239390 239391 239393 239395 239399 239401 239405 239407 239411 239417 239419 239425 239429 239431 239435 239441 239447 239449 239455 239459 239461 239467 239471 239477 239485 266669
| A. | $\frac{4}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{7}{6}$ | D. | $\frac{{\sqrt{42}}}{6}$ |