已知数列满足,()。
(Ⅰ)证明数列为等比数列,并求数列的通项公式;
(Ⅱ)设,求的前n项和;
(Ⅲ)设,数列的前n项和,求证:对。
工厂有一段旧墙长m,现准备利用这段旧墙为一面,建造平面图形为矩形,面积为m2的厂房,工程条件是:(1)建1m新墙费用为a元;(2)修1 m旧墙费用是元;(3)拆去1 m旧墙,用所得材料建1m新墙费用为元,经过讨论有两种方案:
①利用旧墙的一段(x<14)为矩形厂房一面的边长;
②矩形厂房利用旧墙的一面,矩形边长x≥14。
问:如何利用旧墙,即x为多少m时,建墙费用最省?①②两种方案哪种更好?
成都外国语学校开设了甲,乙,丙三门选修课,学生对每门均可选或不选,且选哪门课程互不影响。已知某学生只选修甲的概率为0.08,只选修甲和乙的概率为0.12,至少选修一门的概率为0.88,用表示该学生选修课程的门数,用表示该学生选修课程门数和没有选修课程门数的乘积。
(1)记“函数为偶函数”为事件A,求事件A的概率;
(2)求的分布列与数学期望.
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,
PB与底面ABC成60°角,
求二面角B―PC―A的大小。
已知函数,的最大值为2。
(Ⅰ)求函数在上的值域;
(Ⅱ)已知外接圆半径,,角所对的边分别是,求的值.
给出下列命题;
①设表示不超过的最大整数,则
;
②定义在上的函数,函数与的图象关于轴对称;
③函数的对称中心为;
④已知函数在处有极值,则或;
⑤定义:若任意,总有,就称集合为的“闭集”,已知 且为的“闭集”,则这样的集合共有7个。
其中正确的命题序号是____________
如图,在等腰直角三角形中,,
是的重心,是内的任一点(含边界),则
的最大值为_________
已知函数,其导函数为,则
用数字1,3组成四位数,且数字1,3至少都出现一次,这样的四位数共有_______个
复数满足,则复数的实部与虚部之差为