坐标原点到函数f(x)=ex+1的图象在点(1,f(1))处切线y=g(x)的距离为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
设集合A=|f(x)|存在互不相等的正整数m,n,k,使得[f(n)]2=f(m)f(k),则不属于集合A的函数是( )
| A、f(x)=2x-1 |
| B、f(x)=x2 |
| C、f(x)=2x+1 |
| D、f(x)=log2x |
将函数y=sin(2x-θ)的图象F向右平移
个单位长度得到图象F′,若F′的一个对称中心是(
π,0),则θ的一个可能取值是( )
| π |
| 6 |
| 3 |
| 8 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|
设a>0,且a≠1,则“函数y=logax在(0,+∞)上是减函数”是“函数y=(2-a)x3在R上是增函数”的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
在区间[0,1]上任取三个数x,y,z,若向量
=(x,y,z),则事件|
|≥1发生的概率是( )
| m |
| m |
A、
| ||
B、1-
| ||
C、1-
| ||
D、
|
某班有50名学生,其中正、副班长各1人,现要选派5人参加一项社区活动,要求正、副班长至少1人参加,问共有多少种选派方法?下面是学生提供的四个计算式,其中错误的是( )
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、
|
各项均为实数的等比数列{an}中,a1=1,a5=4,则a3=( )
| A、2 | ||
| B、-2 | ||
C、
| ||
D、-
|
己知函数f(x)=lnx+
,则下列结论中正确的是( )
| 1 |
| lnx |
| A、若x1,x2(x1<x2)是f(x)的极值点,则f(x)在区间(x1,x2)内是增函数 |
| B、若x1,x2(x1<x2)是f(x)的极值点,则f(x)在区间(x1,x2)内是减函数 |
| C、?x>0,且x≠1,f(x)≥2 |
| D、?x0>0,f(x)在(x0,+∞)上是增函数 |
动点P在函数y=sin2x的图象上移动,动点Q(x,y)满足
=(
,0),则动点Q的轨迹方程为( )
| PQ |
| π |
| 8 |
A、y=sin(2x+
| ||
B、y=sin(2x-
| ||
C、y=sin(2x+
| ||
D、y=sin(2x-
|
设f(x)=-x2+bx+c,若关于x的不等式f(x-1)≥0的解集为[0,1],则关于x的不等式f(x+1)≤0的解集为( )
| A、[2,3] |
| B、(-∞,2]∪[3,+∞) |
| C、[-2,-1] |
| D、(-∞,-2]∪[-1,+∞) |