已知函数y=cos(x-
)的图象为C,为了得到函数y=cos(x+
)的图象只需把C上所有的点( )
| 2π |
| 9 |
| 2π |
| 9 |
A、向右平行移动
| ||
B、向左平行移动
| ||
C、向右平行移动
| ||
D、向左平行移动
|
△ABC的内角A、B、C所对的边分别为a,b,c.若B=2A,a=1,b=
,则这样的三角形有( )
| 2 |
| A、只有一个 | B、有两个 |
| C、不存在 | D、无数个 |
圆心(1,-4),且过点(4,0)的圆的标准方程为( )
| A、(x-1)2+(y+4)2=25 |
| B、(x+1)2+(y-4)2=25 |
| C、(x-1)2+(y+4)2=5 |
| D、(x+1)2+(y-4)2=5 |
已知
是方程x2+px+1=0的一个根,则p=( )
-1+
| ||
| 2 |
| A、0 | B、i | C、-i | D、1 |
已知等比数列{an}中,a1=1,a4=27,则此数列的前5项的和S5等于( )
| A、40 | B、111 |
| C、121 | D、131 |
设底面为等边三角形的直棱柱的体积为V,则其表面积最小时,底面边长为( )
A、
| |||
B、
| |||
C、
| |||
D、
|
已知等比数列{an}中,a4+a6=
dx,则a6(a2+2a4+a6)的值为( )
| ∫ | 2 0 |
| 4-x2 |
| A、π2 | B、4 |
| C、π | D、-9π |
设f(x)是奇函数,且在(0,+∞)内是增函数,又f(-2)=0,则x•f(x)<0的解集是( )
| A、{x|x<-2或0<x<2} |
| B、{x|-2<x<0或x>2} |
| C、{x|x<-2或x>2} |
| D、{x|-2<x<0或0<x<2} |
已知双曲线
-
=1(a>0,b>0)与抛物线y2=2px(p>0)有一个共同的焦点F,点M是双曲线与抛物线的一个交点,若|MF|=
p,则此双曲线的离心率等于( )
| x2 |
| a2 |
| y2 |
| b2 |
| 5 |
| 4 |
| A、2 | ||
| B、3 | ||
C、
| ||
D、
|
某高校进行自主招生,先从报名者筛选出400人参加考试,再按笔试成绩择优选出100人参加面试.现随机抽取24名笔试者的成绩,如下表所示:
据此估计参加面试的分数线大约是( )
| 分数段 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) | [85,90) |
| 人数 | 2 | 3 | 4 | 5 | 9 | 1 |
| A、75 | B、80 | C、85 | D、90 |