题目内容
已知函数y=cos(x-
)的图象为C,为了得到函数y=cos(x+
)的图象只需把C上所有的点( )
| 2π |
| 9 |
| 2π |
| 9 |
A、向右平行移动
| ||
B、向左平行移动
| ||
C、向右平行移动
| ||
D、向左平行移动
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答:
解:把函数y=cos(x-
)的图象C向左平行移动
个单位长度,
可得函数y=cos(x+
)的图象,
故选:D.
| 2π |
| 9 |
| 4π |
| 9 |
可得函数y=cos(x+
| 2π |
| 9 |
故选:D.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
下列函数表示同一个函数是( )
A、y=x与y=
| ||||||
B、y=
| ||||||
C、y=
| ||||||
D、y=x与y=
|
已知点A、B、C为椭圆
+y2=1上三点,其中A(1,
),且△ABC的内切圆圆心在直线x=1上,则△ABC三边斜率和为( )
| x2 |
| 4 |
| ||
| 2 |
A、-
| ||||
B、
| ||||
C、-
| ||||
D、
|
圆x2+y2+4x-2y+4=0的点到直线y=x-1上的最近距离为( )
A、2
| ||
B、
| ||
C、2
| ||
| D、1 |
设底面为等边三角形的直棱柱的体积为V,则其表面积最小时,底面边长为( )
A、
| |||
B、
| |||
C、
| |||
D、
|
已知函数f(x)=
x3-x2+ax+b,其中a<0,如果存在实数t,使f′(t)<0,则f′(2-t)•f′(
)的值( )
| 1 |
| 3 |
| 3t+1 |
| 4 |
| A、必为正数 | B、必为负数 |
| C、必为非负 | D、必为非正 |
棱长为a的正方体内切一球,该球的表面积为( )
| A、πa2 |
| B、2πa2 |
| C、3πa2 |
| D、4πa2 |