直线y=ax-a与圆x2+y2=1的位置关系一定是( )
| A、相离 | B、相交 |
| C、相切 | D、与a的取值有关 |
在底面是直角梯形的四棱锥S-ABCD中∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
,则这个四棱锥的体积是( )
| 1 |
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知cosα=-
,α∈(
,π),则cos(
+α)=( )
| 4 |
| 5 |
| π |
| 2 |
| π |
| 2 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|
若两个函数的图象仅经过若干次平移能够重合,则称这两个函数为“同形”函数,给出下列三个函数:f1(x)=2cos2x,f2(x)=sinx+
cosx,f3(x)=2cos(x-
)-1,则( )
| 3 |
| π |
| 3 |
| A、f1(x),f2(x),f3(x)两两为“同形”函数 |
| B、f1(x),f2(x),f3(x)两两不为“同形”函数 |
| C、f1(x),f2(x)为“同形”函数,且它们与f3(x) 不为“同形”函数 |
| D、f2(x),f3(x)为“同形”函数,且它们与f1(x) 不为“同形”函数 |