已定义在R上的偶函数f(x)满足x∈(-∞,0)时,f(x)+xf′(x)<0成立,若a=20.2f(20.2),b=ln2f(ln2),c=(log0.50.25)•f(log0.50.25),则a,b,c的大小关系是( )
| A、a>b>c |
| B、c>a>b |
| C、b>a>c |
| D、a>c>b |
设数列{an}的前n项和为Sn,a1=1,an=
+2(n-1),(n∈N*),若S1+
+
+…+
-(n-1)2=2015,则n的值为( )
| Sn |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| A、1008 | B、1007 |
| C、2014 | D、2015 |
已知函数f(x)=|x+2|-|x-1|,则f(x)的值域是( )
| A、(-3,3) |
| B、[-3,3] |
| C、[3,+∞) |
| D、[-3,+∞) |
数列{an}满足an=(2n-1)•sin(
+nπ),则它的前2014项和等于( )
| π |
| 2 |
| A、-2015 | B、-2014 |
| C、2014 | D、2015 |
已知椭圆的焦点在x轴上,长半轴长是3,短半轴长是2,则椭圆的标准方程是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
实数a、b、c满足a+b+c=0,abc>0,则
+
+
的值( )
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| A、一定是正数 |
| B、一定是负数 |
| C、可能是0 |
| D、正、负不能确定 |
p是q的充要条件,s是q的必要不充分条件,则s是p的( )条件.
| A、充分不必要 |
| B、必要不充分 |
| C、既不充分也不必要 |
| D、充要 |
设α表示平面,a、b、l表示直线,给出下列命题,
①
⇒l⊥α;②
⇒b⊥α;③
⇒a⊥α;④直线l与平面α内无数条直线垂直,则l⊥α.
其中正确结论的个数为( )
①
|
|
|
其中正确结论的个数为( )
| A、0 | B、1 | C、2 | D、3 |
已知点F1,F2分别是椭圆
+
=1(a>b>0)的左、右焦点,点P是椭圆上的一个动点,若使得满足△PF1F2是直角三角形的动点P恰好有6个,则该椭圆的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|