题目内容

已定义在R上的偶函数f(x)满足x∈(-∞,0)时,f(x)+xf′(x)<0成立,若a=20.2f(20.2),b=ln2f(ln2),c=(log0.50.25)•f(log0.50.25),则a,b,c的大小关系是(  )
A、a>b>c
B、c>a>b
C、b>a>c
D、a>c>b
考点:利用导数研究函数的单调性,函数单调性的判断与证明,不等关系与不等式
专题:导数的综合应用
分析:构造函数h(x)=xf(x),由y=f(x)是R上的偶函数,y=x是R上的奇函数,得h(x)=xf(x)是R上的奇函数,h(x)在(-∞,0)递减,在(0,+∞)递减,得2>20.2>1,0<ln2<1,
log
0.25
0.5
>20.2>ln2.
解答: 解:构造函数h(x)=xf(x),由y=f(x)是R上的偶函数,y=x是R上的奇函数,
得h(x)=xf(x)是R上的奇函数,
又x∈(-∞,0)时,h′(x)=f(x)+xf′(x)<0成立,
∴h(x)在(-∞,0)递减,在(0,+∞)递减,
∵2>20.2>1,0<ln2<1,∴
log
0.25
0.5
=2>20.2>ln2,
即b>a>c,
故选:C.
点评:本题考察了函数的单调性,导数的应用,函数的奇偶性,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网