抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,O为坐标原点,则
的最小值是( )
| |PF| |
| |PO| |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
用反证法证明:如果a>b>0,则
>
.其中假设的内容应是( )
| a |
| b |
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、
|
复数
的共轭复数在复平面内对应的点位于( )
| 1+i |
| 2-i |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
若设变量x,y满足约束条件
,则目标函数z=2x+y的最大值为( )
|
| A、5 | B、4 | C、6 | D、14 |
在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a2+c2-b2=
ac,则∠B为( )
| 2 |
| A、60° | B、45°或135° |
| C、135° | D、45° |
下列说法,不正确的是( )
①数据4、6、6、7、9、4的众数是4;
②平均数、众数与中位数从不同的角度描述了一组数据的集中趋势;
③平均数是频率分布直方图的“重心”;
④频率分布直方图中各小长方形的面积等于相应各组的频数.
①数据4、6、6、7、9、4的众数是4;
②平均数、众数与中位数从不同的角度描述了一组数据的集中趋势;
③平均数是频率分布直方图的“重心”;
④频率分布直方图中各小长方形的面积等于相应各组的频数.
| A、①②③ | B、②③ |
| C、①④ | D、①③④ |
已知i为虚数单位,z=
,且z的共轭复数为
,则
=( )
| 1 |
| 1-i |
. |
| z |
. |
| z |
A、
| ||
B、
| ||
| C、1+i | ||
| D、1-i |
下列各式中的S值不可以用算法求解的是( )
| A、S=1+2+3+4 | ||||
| B、S=12+22+32+…+1002 | ||||
C、S=1+
| ||||
| D、S=1+2+3+… |
对于两条不同的直线a,b和平面β,若a⊥β,则“a∥b“是“b⊥β”的( )
| A、充分必要条件 |
| B、充分不必要条件 |
| C、必要不充分条件 |
| D、既不充分又不必要条件 |
直线l1:(2-a)x+ay+3=0和直线l2:x-ay-3=0,若直线l1的法向量恰好是直线l2的方向向量,则实数a的值为( )
| A、-2 | B、1 | C、-2或1 | D、0 |