题目内容
若设变量x,y满足约束条件
,则目标函数z=2x+y的最大值为( )
|
| A、5 | B、4 | C、6 | D、14 |
考点:简单线性规划
专题:解三角形
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.
解答:
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由
,解得
,即A(2,2),
代入目标函数z=2x+y得z=2×2+2=4+2=6.
即目标函数z=2x+y的最大值为6.
故选:C.
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由
|
|
代入目标函数z=2x+y得z=2×2+2=4+2=6.
即目标函数z=2x+y的最大值为6.
故选:C.
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≥f(x),对任意正数a,b,若a<b,则必有( )
| A、af(a)≤bf(b) |
| B、bf(a)<af(b) |
| C、af(a)>bf(b) |
| D、bf(a)≥af(b) |
已知x>0,y>0,2x+3y=1,则4x+8y的最小值为( )
| A、8 | ||
| B、6 | ||
C、2
| ||
D、3
|
一物体的运动方程为s=sin2t+3t+1,则它的速度方程为( )
| A、v=2cos2t+3 |
| B、v=2sin2t+3 |
| C、v=-2cos2t+3 |
| D、v=2cos2t+3t+1 |
对于两条不同的直线a,b和平面β,若a⊥β,则“a∥b“是“b⊥β”的( )
| A、充分必要条件 |
| B、充分不必要条件 |
| C、必要不充分条件 |
| D、既不充分又不必要条件 |
已知ab>0,且
+
≥m恒成立,则m的取值范围是( )
| b |
| a |
| a |
| b |
| A、{2} |
| B、[2,+∞) |
| C、(-∞,2] |
| D、[-2,+∞) |
用总长为120cm的钢条围成一个长方体的框架,要求长方体底面边长比是2:3,当长方体的体积最大时,长方体的高为( )
| A、4cm | B、6cm |
| C、8cm | D、10cm |