知f(x)是实数集上的偶函数,且在区间[0,+∞)上是增函数,则f(-2),f(-π),f(3)的大小关系是( )
| A、f(-π)>f(-2)>f(3) |
| B、f(3)>f(-π)>f(-2) |
| C、f(-2)>f(3)>f(-π) |
| D、f(-π)>f(3)>f(-2) |
设命题甲:x>3,乙:x<5,则( )
| A、甲是乙的充分条件但不是必要条件 |
| B、甲是乙的必要条件但不是充分条件 |
| C、甲是乙的充分必要条件 |
| D、甲不是乙的充分条件也不是乙的必要条件 |
设二次函数f(x)=-x2+x+a(a<0),若f(m)>0,则f(m+1)的值为( )
| A、正数 | B、负数 |
| C、非负数 | D、正数、负数或零都有可能 |
函数y=x2+2x-3(x>0)的单调增区间是( )
| A、(0,+∞) |
| B、(1,+∞) |
| C、(-∞,-1) |
| D、(-∞,-3] |
已知偶数f(x)以4为周期,且当x∈[-2,0]时,f(x)=(
)x-1,若在区间[-6,6]内关于x的方程f(x)•log2(|x|+2)=0(a>1)恰有4个不同的实数根,则a的取值范围是( )
| 1 |
| 2 |
| A、(1,2) | |||
| B、(2,+∞) | |||
C、(1,
| |||
D、(
|
已知函数f (x)在区间[a,b]上单调,且f(a)•f(b)<0,则函数f(x)的图象与x轴在区间[a,b]内( )
| A、至多有一个交点 |
| B、必有唯一个交点 |
| C、至少有一个交点 |
| D、没有交点 |