△ABC的三个顶点分别是A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD长为( )
| A、5 | ||
B、
| ||
| C、4 | ||
D、2
|
若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( )
| A、(b,c)和 (c,+∞) 内 |
| B、(-∞,a)和(a,b)内 |
| C、(a,b)和(b,c)内 |
| D、(-∞,a)和(c,+∞) 内 |
从装有2个红球和2个黒球的口袋内任取2个球,则互斥而不对立的两个事件是( )
| A、“至少有一个黑球”与“都是红球” |
| B、“至少有一个黒球”与“都是黒球” |
| C、“恰有m个黒球”与“恰有2个黒球” |
| D、“至少有一个黒球”与“至少有1个红球” |
设函数f(x)=lnx+x2,曲y=f(x)线在点(1,f(1))处的切线方程为( )
| A、y=3x |
| B、y=3x-2 |
| C、y=2x-1 |
| D、y=2x-3 |
已知f(x)是奇函数,当x>0时f(x)=-x(1+x),当x<0时,f(x)等于( )
| A、-x(1-x) |
| B、x(1-x) |
| C、-x(1+x) |
| D、x(1+x) |
在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是( )
| A、y2=8x |
| B、y2=-8x |
| C、y2=4x |
| D、y2=-4x |
若a,b,c,d∈R,a>b,c>d,则下列不等式成立的是( )
| A、ac>bd |
| B、a2>b2 |
| C、c2≥d2 |
| D、a-d>b-c |