题目内容

14.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE∥面APD;
(2)证明BE⊥CD;
(3)求三棱锥P-BDE的体积.

分析 (1)取PD中点F,连接AF,EF,可得四边形ABEF是平行四边形,即可的BE∥AF,BE∥面PAD;
(2)可得PA⊥DC.CD⊥面PAD,即AF⊥DC,且AF∥BE,得BE⊥CD;
(3)点E为棱PC的中点,PA⊥底面ABCD,${V_{P-BDE}}={V_{B-PDE}}=\frac{1}{2}{V_{B-PDC}}=\frac{1}{2}{V_{P-BDC}}=\frac{1}{6}{S_{△BDC}}.PA=\frac{2}{3}$.

解答 证明:(1)取PD中点F,连接AF,EF,
∵E,F分别是PC,PD的中点,
∴$EF∥CD,EF=\frac{1}{2}CD$∵$AB∥CD,AB=\frac{1}{2}CD$,
∴EF∥AB,EF=AB∴四边形ABEF是平行四边形,
∴BE∥AF,又BE?面PAD,AF?面PAD∴BE∥面PAD,
(2  由PA⊥面ABCD,DC?面ABCD,∴PA⊥DC.
$\begin{array}{l}又∵AD⊥DC$,∴$DC⊥面PAD\\∴DC⊥AF$,∴AF⊥DC,且AF∥BE,
∴BE⊥CD;
(3)∵点E为棱PC的中点,PA⊥底面ABCD,
∴${V_{P-BDE}}={V_{B-PDE}}=\frac{1}{2}{V_{B-PDC}}=\frac{1}{2}{V_{P-BDC}}=\frac{1}{6}{S_{△BDC}}.PA=\frac{2}{3}$.

点评 本题考查了空间线面平行、线线垂直的判定,考查了等体积法求体积,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网