题目内容
13.已知直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数),若以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).则直线l和圆C的位置关系为相交(填相交、相切、相离).分析 求出直线l的直角坐标方程和圆C的直角坐标方程,求出圆心C(1,1)到直线l:2x-y+1=0的距离d,由d小于圆半径得到直线l和圆C相交.
解答 解:直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数),
消去参数t,得直线l的直角坐标方程为:2x-y+1=0,
圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
∴$ρ=2\sqrt{2}(sinθcos\frac{π}{4}+cosθsin\frac{π}{4})$=2sinθ+2cosθ,
∴ρ2=2ρsinθ+2ρcosθ,
∴x2+y2=2y+2x,
∴(x-1)2+(y-1)2=1.
∵圆心C(1,1)到直线l:2x-y+1=0的距离d=$\frac{|2-1+1|}{\sqrt{4+1}}$=$\frac{2\sqrt{5}}{5}$<1=r,
∴直线l和圆C相交.
故答案为:相交.
点评 本题考查直线和圆的位置关系的判断,是中档题,解题时要认真审题,注意极坐标、直角坐标互化公式、两点间距离公式的合理运用.
练习册系列答案
相关题目
4.过点A(3,4)且与点B(-3,2)的距离最短的直线方程为( )
| A. | 3x-y-5=0 | B. | x-3y+9=0 | C. | 3x+y-13=0 | D. | x+3y-15=0 |
1.
元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,问一开始输入的x=( )
| A. | $\frac{3}{4}$ | B. | $\frac{7}{8}$ | C. | $\frac{15}{16}$ | D. | $\frac{31}{32}$ |
18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(千万元) | 2 | 3 | 3 | 4 | 5 |
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)