题目内容
已知集合A={x||x+1|<1},B{x|y=
},则A∩B=( )
| 1 | ||
|
| A、(-2,-1) |
| B、(-2,-1] |
| C、(-1,0) |
| D、[-1,0) |
考点:交集及其运算
专题:集合
分析:求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出两集合的交集即可.
解答:
解:由A中的不等式变形得:-1<x+1<1,
解得:-2<x<0,即A=(-2,0),
由B中y=
,得到x+1>0,即x>-1,
∴B=(-1,+∞),
则A∩B=(-1,0).
故选:C.
解得:-2<x<0,即A=(-2,0),
由B中y=
| 1 | ||
|
∴B=(-1,+∞),
则A∩B=(-1,0).
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
已知f(x)=asinx+b
+4(a,b∈R),且f(-1)=5,则f(1)=( )
| 3 | x |
| A、0 | B、-3 | C、-5 | D、3 |
设函数f(x)=
,则f(x)的图象( )
| (x-2)ln(x-3) |
| x-4 |
| A、在第一象限内 |
| B、在第四象限内 |
| C、与x轴正半轴有公共点 |
| D、一部分在第四象限内,其余部分在第一象限内 |
已知集合A={x丨log2x>0},B={x丨x(x-2)>0},则A∩B=( )
| A、(0,+∞) |
| B、(1,+∞) |
| C、(1,2) |
| D、(2,+∞) |
已知曲线C是y=f(x)(x∈R)的图象,则( )
| A、直线x=1与C可能有两个交点 |
| B、直线x=1与C有且只有一个交点 |
| C、直线y=1与C有且只有一个交点 |
| D、直线y=1与C不可能有两个交点 |