题目内容
7.已知f(α)=$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{2sin(3π+α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.(1)化简f(α);
(2)若$α=-\frac{25}{4}π$,求f(α)的值.
分析 (1)由题意利用诱导公式化简所给式子,可得结果.
(2)把$α=-\frac{25}{4}π$代入f(α)的式子,利用诱导公式化简,求得f(α)的值.
解答 解:(1)f(α)=$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{2sin(3π+α)sin(-π-α)sin(\frac{9π}{2}+α)}}$
=$\frac{(-sinα)(-cosα)(-sinα)(-sinα)}{2(-sinα)sinαcosα}=-\frac{1}{2}sinα$.
(2)当$α=-\frac{25}{4}π$时,$f(α)=-\frac{1}{2}sin(-\frac{25}{4}π)$=$-\frac{1}{2}×sin(-6π-\frac{π}{4})=-\frac{1}{2}×sin(-\frac{π}{4})=\frac{{\sqrt{2}}}{4}$.
点评 本题主要考查诱导公式的应用,属于基础题.
练习册系列答案
相关题目
17.设函数f(x)=ex,g(x)=lnx-2.
(Ⅰ)证明:$g(x)≥-\frac{e}{x}$;
(Ⅱ)若对所有的x≥0,都有$f(x)-\frac{1}{f(x)}≥ax$,求实数a的取值范围.
(Ⅰ)证明:$g(x)≥-\frac{e}{x}$;
(Ⅱ)若对所有的x≥0,都有$f(x)-\frac{1}{f(x)}≥ax$,求实数a的取值范围.
15.一个几何体的三视图如图所示,则该几何体的表面积为( )

| A. | $12+\sqrt{3}$ | B. | $10+\sqrt{3}$ | C. | $10+2\sqrt{3}$ | D. | $11+\sqrt{3}$ |
17.
某手机生产企业为了解消费者对某款手机功能的认同情况,通过销售部随机抽取50名购买该款手机的消费者,并发出问卷调查,该问卷只有30份给予回复,这30份的评分如下:
(Ⅰ)完成茎叶图,并求16名男消费者评分的中位数与14名女消费者评分的平均值;
(Ⅱ)若大于40分为“满意”,否则为“不满意”,完成上面的2×2列联表,并判断是否有95%的把握认为消费者对该款手机的“满意度”与性别有关.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
参考数据:
| 男 | 47,36,28,48,29,48,44,50,46,46,42,45,50,37,35,49 |
| 女 | 38,35,37,48,47,36,38,45,39,29,49,28,44,33 |
(Ⅱ)若大于40分为“满意”,否则为“不满意”,完成上面的2×2列联表,并判断是否有95%的把握认为消费者对该款手机的“满意度”与性别有关.
| 满意 | 不满意 | 合计 | |
| 男 | |||
| 女 | |||
| 合计 |
参考数据:
| P(K2≥k0) | 0.05 | 0.025 | 0.01 |
| k0 | 3.841 | 5.024 | 6.635 |