ÌâÄ¿ÄÚÈÝ

ÈôÊýÁÐ{bn}Âú×㣺¶ÔÓÚn¡ÊN*£¬¶¼ÓÐbn+2-bn=d£¨dΪ³£Êý£©£¬Ôò³ÆÊýÁÐ{bn}Êǹ«²îΪdµÄ¡°¸ôÏîµÈ²î¡±ÊýÁУ®
£¨¢ñ£©Èôc1=3£¬c2=17£¬{cn}Êǹ«²îΪ8µÄ¡°¸ôÏîµÈ²î¡±ÊýÁУ¬Çó{cn}µÄǰ15ÏîÖ®ºÍ£»
£¨¢ò£©ÉèÊýÁÐ{an}Âú×㣺a1=a£¬¶ÔÓÚn¡ÊN*£¬¶¼ÓÐan+an+1=2n£®
¢ÙÇóÖ¤£ºÊýÁÐ{an}Ϊ¡°¸ôÏîµÈ²î¡±ÊýÁУ¬²¢ÇóÆäͨÏʽ£»
¢ÚÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÊÔÑо¿£ºÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃS2k£¬S2k+1£¬S2k+2³ÉµÈ±ÈÊýÁУ¨k¡ÊN*£©£¿Èô´æÔÚ£¬ÇëÇó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÓ¦ÓÃ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺ӦÓÃÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÌâÒâÔËÓõȲîÊýÁеÄÇóºÍ¹«Ê½Çó½â¼´¿É£¬µ«ÊÇ×¢ÒâÏîÊý£¬¼°Ê×ÏĩÏ
£¨¢ò£©·ÖÀàÌÖÂÛÇó½âÅжϳöf1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
Ϊ¹«²îΪ2µÄ¡°¸ôÏîµÈ²î¡±ÊýÁУ®
ÓÉ£¨S2k+1£©2=S2k-S2k+2£¬Ôò£¨2k2+2k+a£©2=2k2•2£¨k+1£©2£¬Çó³öaµÄÖµ£®
½â´ð£º ½â£º£¨¢ñ£©Ò×µÃÊýÁÐ{cn}ǰ15ÏîÖ®ºÍ=
(3+59)¡Á8
2
+
(17+65)¡Á7
2
=535

£¨¢ò£©¸ù¾ÝÌâÒâ¿ÉµÃf1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
£¨f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
£©£®
ËùÒÔf1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
Ϊ¹«²îΪ2µÄ¡°¸ôÏîµÈ²î¡±ÊýÁУ® 
µ±f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
ΪżÊýʱ£¬
f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
£¬
µ±f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
ÎªÆæÊýʱ£¬
f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
£»
¢Úµ±f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
ΪżÊýʱ£¬
f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
£»
µ±f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
ÎªÆæÊýʱ£¬
f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
f1(x)=
mx
4x2+16
£¬f2(x)=(
1
2
)|x-m|
£®                         
¹Êµ±n=2kʱ£¬S2k=2k2£¬S2k+1=2k2+2k+a£¬S2k+2=2(k+1)2£¬
½âµÃa=0£®
ËùÒÔ´æÔÚʵÊýa=0£¬Ê¹µÃS2k£¬S2k+1£¬S2k+2³ÉµÈ±ÈÊýÁУ¨k¡ÊN*£©
µãÆÀ£º±¾Ì⿼²éÁËÊýÁеÄʵ¼ÊÓ¦Óã¬ÊôÓÚÄÑÌ⣬˼άÁ¿´ó£¬¼ÆËãÁ¿´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø