题目内容
在△ABC中,角A,B,C的对边分别为a,b,c,且tanA+tanB=
.
(Ⅰ)求角B的大小;
(Ⅱ)已知
+
=3,求
+
的值.
| 2sinC |
| cosA |
(Ⅰ)求角B的大小;
(Ⅱ)已知
| a |
| c |
| c |
| a |
| 1 |
| tanA |
| 1 |
| tanC |
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)切化弦,可整理为tanA+tanB=
,结合已知tanA+tanB=
,可求得cosB=
,在△ABC中,可求得B的值;
(Ⅱ)由
+
=3,易求
=2,利用正弦定理可得
=
=
=2,从而可求得
+
的值.
| sinC |
| cosAcosB |
| 2sinC |
| cosA |
| 1 |
| 2 |
(Ⅱ)由
| a |
| c |
| c |
| a |
| b2 |
| ac |
| b2 |
| ac |
| sin2B |
| sinAsinC |
| 3 |
| 4sinAsinC |
| 1 |
| tanA |
| 1 |
| tanC |
解答:
解:(Ⅰ)∵tanA+tanB=
+
=
=
=
,…(3分)
∵tanA+tanB=
,
∴
=
,
∴cosB=
,
∵0<B<π,
∴B=
.…(6分)
(Ⅱ)∵
+
=
=
=
=3,
∴
=2,…(9分)
而
=
=
=
,
∴sinAsinC=
.…(12分)
∴
+
=
+
=
=
=
=
.…(14分)
| sinA |
| cosA |
| sinB |
| cosB |
| sinAcosB+cosAsinB |
| cosAcosB |
| sin(A+B) |
| cosAcosB |
| sinC |
| cosAcosB |
∵tanA+tanB=
| 2sinC |
| cosA |
∴
| sinC |
| cosAcosB |
| 2sinC |
| cosA |
∴cosB=
| 1 |
| 2 |
∵0<B<π,
∴B=
| π |
| 3 |
(Ⅱ)∵
| a |
| c |
| c |
| a |
| a2+c2 |
| ac |
| b2+2accosB |
| ac |
b2+2ac×
| ||
| ac |
∴
| b2 |
| ac |
而
| b2 |
| ac |
| sin2B |
| sinAsinC |
sin2
| ||
| sinAsinC |
| 3 |
| 4sinAsinC |
∴sinAsinC=
| 3 |
| 8 |
∴
| 1 |
| tanA |
| 1 |
| tanC |
| cosA |
| sinA |
| cosC |
| sinC |
| sin(A+C) |
| sinAsinC |
| sinB |
| sinAsinC |
| ||
| 2sinAsinC |
4
| ||
| 3 |
点评:本题考查正弦定理与余弦定理的综合应用,考查等价转化思想与运算求解能力,属于中档题.
练习册系列答案
相关题目
执行如图所示的程序框图,则输出的结果是( )

| A、5 | B、7 | C、9 | D、11 |