题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,且tanA+tanB=
2sinC
cosA

(Ⅰ)求角B的大小;
(Ⅱ)已知
a
c
+
c
a
=3,求
1
tanA
+
1
tanC
的值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)切化弦,可整理为tanA+tanB=
sinC
cosAcosB
,结合已知tanA+tanB=
2sinC
cosA
,可求得cosB=
1
2
,在△ABC中,可求得B的值;
(Ⅱ)由
a
c
+
c
a
=3,易求
b2
ac
=2,利用正弦定理可得
b2
ac
=
sin2B
sinAsinC
=
3
4sinAsinC
=2,从而可求得
1
tanA
+
1
tanC
的值.
解答: 解:(Ⅰ)∵tanA+tanB=
sinA
cosA
+
sinB
cosB
=
sinAcosB+cosAsinB
cosAcosB
=
sin(A+B)
cosAcosB
=
sinC
cosAcosB
,…(3分)
∵tanA+tanB=
2sinC
cosA

sinC
cosAcosB
=
2sinC
cosA

∴cosB=
1
2

∵0<B<π,
∴B=
π
3
.…(6分)
(Ⅱ)∵
a
c
+
c
a
=
a2+c2
ac
=
b2+2accosB
ac
=
b2+2ac×
1
2
ac
=3,
b2
ac
=2,…(9分)
b2
ac
=
sin2B
sinAsinC
=
sin2
π
3
sinAsinC
=
3
4sinAsinC

∴sinAsinC=
3
8
.…(12分)
1
tanA
+
1
tanC
=
cosA
sinA
+
cosC
sinC
=
sin(A+C)
sinAsinC
=
sinB
sinAsinC
=
3
2sinAsinC
=
4
3
3
.…(14分)
点评:本题考查正弦定理与余弦定理的综合应用,考查等价转化思想与运算求解能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网