题目内容

15.若f(x)=ax2+3a是定义在[a2-5,a-1]上的偶函数,令函数g(x)=f(x)+f(1-x),则函数g(x)的定义域为[0,1].

分析 根据题意和偶函数的性质列出不等式组,求出a的值,可得函数f(x)的定义域,由函数g(x)的解析式列出不等式,求出g(x)的定义域.

解答 解:∵f(x)是定义在[a2-5,a-1]上的偶函数,
∴$\left\{\begin{array}{l}{{a}^{2}-5+a-1=0}\\{a-1>{a}^{2}-5}\end{array}\right.$,解得a=2,
则函数f(x)的定义域是[-1,1],
由$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤1-x≤1}\end{array}\right.$得,0≤x≤1,
∴函数g(x)的定义域是[0,1],
故答案为:[0,1].

点评 本题考查了函数奇偶性的性质,以及函数定义域的求法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网