题目内容

已知函数f(x)=3sin(
1
2
x-
π
4
).x∈R.
(1)列表并画出函数f(x)在长度为一个周期的闭区间上的简图;
(2)将函数y=sinx的图象作怎样的变换可得到f(x)的图象?
考点:五点法作函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(1)求出对应的五点,利用“五点作图法”画出函数y=f(x)在一个周期上的图象.
(2)根据三角函数的解析式的关系即可得到结论.
解答: 解:(1)函数f(x)的周期T=
1
2
=4π

1
2
x-
π
4
=0,
π
2
,π,
2
,2π
,解得x=
π
2
2
2
2
2
.列表如下:
x
π
2
2
2
2
2
1
2
x-
π
4
0
π
2
π
2
3sin(
1
2
x-
π
4
030-30
描出五个关键点并光滑连线,得到一个周期的简图.图象如下.
  
(2)方法一:先把y=sinx的图象向右平移
π
4
个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f(x)的图象.
方法二:先把y=sinx的图象所有点的纵坐标扩大为原来的3倍,然后把所有点的横坐标扩大为原来的2倍,再把图象向右平移
π
2
个单位,得到f(x)的图象.
点评:本题主要考查三角函数的图象和性质,利用条件求出函数的解析式是解决本题的关键.要求熟练掌握五点作图法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网