题目内容
计算下列各式:
(1)
-(
-1)0-
;
(2)(2a
b
)(-6a
b
)÷(-3a
b
)
(1)
| 1 | ||
|
| 3 |
| (2-5)2 |
(2)(2a
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 5 |
| 6 |
考点:根式与分数指数幂的互化及其化简运算
专题:计算题
分析:(1)分母有理化,化0指数幂为1,整理后得答案;
(2)先计算系数,然后利用同底数幂的乘除运算化简求值.
(2)先计算系数,然后利用同底数幂的乘除运算化简求值.
解答:
解:(1)
-(
-1)0-
=
-1-3
=
-2-1-3
=
-6;
(2)(2a
b
)(-6a
b
)÷(-3a
b
)
=4a
+
-
b
+
-
=4a
-
b0
=4a.
| 1 | ||
|
| 3 |
| (2-5)2 |
=
| ||||
(
|
=
| 5 |
=
| 5 |
(2)(2a
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 5 |
| 6 |
=4a
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 5 |
| 6 |
=4a
| 7 |
| 6 |
| 1 |
| 6 |
=4a.
点评:本题考查了根式与分数指数幂的互化及其化简运算,是基础的计算题.
练习册系列答案
相关题目
设集合M={x|x-m<0},N={y|y=ax-1,a>0且a≠1},若M∩N=∅,则m的范围是( )
| A、m≥-1 | B、m>-1 |
| C、m≤-1 | D、m<-1 |