题目内容
10.设函数f(x)=|-2x+4|-|x+6|.(1)求不等式f(x)≥0的解集;
(2)若f(x)>a+|x-2|存在实数解,求实数a的取值范围.
分析 (1)通过讨论x的范围求出不等式的解集即可;
(2)问题等价于|x-2|-|x+6|>a,根据绝对值不等式的性质求出a的范围即可.
解答 解:(1)f(x)≥0即|2x-4|-|x+6|≥0,
可化为①$\left\{\begin{array}{l}{x<-6}\\{-(2x-4)+(x+6)≥0}\end{array}\right.$
或②$\left\{\begin{array}{l}{-6≤x≤2}\\{-(2x-4)-(x+6)≥0}\end{array}\right.$,
或③$\left\{\begin{array}{l}{x>2}\\{(2x-4)-(x+6)≥0}\end{array}\right.$,
解得x<-6或-6≤x≤-$\frac{2}{3}$或x≥10,
综上,不等式的解集是(-∞,-$\frac{2}{3}$]∪[10,+∞);
(2)f(x)>a+|x-2|等价于2|x-2|-|x+6|>a+|x-2|,
等价于|x-2|-|x+6|>a,
而|x-2|-|x+6|≤|x-2-x-6|=8,
若f(x)>a+|x-2|存在实数解,则a<8,
即实数a的范围是(-∞,8).
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,考查绝对值的性质,是一道中档题.
练习册系列答案
相关题目
5.在△ABC中,若$\frac{cosA}{cosB}$=$\frac{b}{a}$,$\frac{cosB}{cosC}$=$\frac{c}{b}$,则△ABC是( )
| A. | 直角三角形 | B. | 等腰三角形,但不是正三角形 | ||
| C. | 直角三角形或等腰三角形 | D. | 正三角形 |
15.函数f(x)=x2($\frac{3}{2}$-x)的单调增区间为( )
| A. | (-1,0)、(0,1) | B. | (-∞,0)、(1,+∞) | C. | (0,3) | D. | (0,1) |
2.已知过定点P(2,0)的直线l与曲线y=$\sqrt{2-{x}^{2}}$相交于A,B两点,O为坐标原点,当S△AOB=1时,直线l的倾斜角为( )
| A. | 150° | B. | 120° | C. | 120°或60° | D. | 150°或30° |
7.要得到函数y=sinx的图象,只需将函数$y=cos(2x-\frac{π}{4})$的图象上所有的点( )
| A. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{8}$个单位长度 | |
| B. | 横坐标伸长到原来的2倍(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度 | |
| C. | 横坐标伸长到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度 | |
| D. | 横坐标伸长到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{8}$个单位长度 |