题目内容

设α∈(0,
π
2
),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,当x≥y时,有f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)
(1)求f(
1
2
),f(
1
4
);
(2)求α的值
(3)求函数g(x)=sin(α-2x)的单调增区间.
考点:正弦函数的单调性,函数的值
专题:三角函数的图像与性质
分析:(1)利用赋值法即可求f(
1
2
),f(
1
4
);
(2)建立方程关系,利用三角函数的关系即可求α的值
(3)根据三角函数的单调性,建立不等式关系即可求函数g(x)=sin(α-2x)的单调增区间.
解答: 解:(1)当x=0,y=1时,由f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)
得f(
1
2
)=f(
1
2
)sinα+(1-sinα)f(0)=sinα,
f(
1
4
)=f(
1
2
+0
2
)=f(
1
2
)sinα+(1-sinα)f(0)=sin2α,
(2)f(
3
4
)=f(
1+
1
2
2
)=f(1)sinα+(1-sinα)f(
1
2
)=sinα(2-sinα),
即f(
1
2
)=f(
3
4
+
1
4
2
)=f(
3
4
)sinα+(1-sinα)f(
1
4
)=sin2α(3-2sinα),
∴sinα=sin2α(3-2sinα),
∴sinα=0或1或
1
2

∵α∈(0,
π
2
),∴α=
π
6

(3)g(x)=sin(α-2x)=sin(
π
6
-2x)=sin(2x+
6
),
由-
π
2
+2kπ≤2x+
6
π
2
+2kπ,
解得kπ-
3
≤x≤kπ-
π
6

∴g(x)的单调增区间为[kπ-
3
,kπ-
π
6
]k∈Z.
点评:本题主要考查三角函数的单调性的判断,利用抽象函数,利用赋值法是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网