题目内容

2.设三棱锥PABC的顶点P在平面ABC上的射影是H,给出下列命题:
①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;
②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;
③若PA=PB=PC,则H是△ABC的外心.
请把正确命题的序号填在横线上:①②③.

分析 根据题意画出图形,然后对应选项一一判定即可.

解答 解:①因为PH⊥底面ABC,所以PH⊥BC,又PA⊥BC,所以BC⊥平面PAH,所以AH⊥BC.同理BH⊥AC,可得H是△ABC的垂心,正确.
②若PA,PB,PC两两互相垂直,所以PA⊥平面PBC,所以PA⊥BC,由此推出AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.
③若PA=PB=PC,由此推出AH=BH=CH,则H是△ABC的外心,正确.
故答案为①②③.

点评 本题考查棱锥的结构特征,考查学生分析问题解决问题的能力,三垂线定理的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网