题目内容
14.若a=2${\;}^{-\frac{1}{3}}$,b=$\frac{1}{\sqrt{2}}$,求a${\;}^{-\frac{1}{2}}$•b$\sqrt{a{b}^{2}}$•($\sqrt{{a}^{3}}$)2.分析 直接由根式化为分式指数幂,然后化简求值即可得答案.
解答 解:由a=2${\;}^{-\frac{1}{3}}$,b=$\frac{1}{\sqrt{2}}$=${2}^{-\frac{1}{2}}$,
则a${\;}^{-\frac{1}{2}}$•b$\sqrt{a{b}^{2}}$•($\sqrt{{a}^{3}}$)2=${a}^{-\frac{1}{2}}•b•{a}^{\frac{1}{2}}b•{a}^{3}$=a3b2=$({2}^{-\frac{1}{3}})^{3}•({2}^{-\frac{1}{2}})^{2}$=$\frac{1}{4}$.
点评 本题考查了根式与分式指数幂的互化及其化简求值,是基础题.
练习册系列答案
相关题目
9.已知函数f(x)=sin2x+acos2x(x∈R,a为∈R),若将其图象向右平移$\frac{π}{6}$个单位长度后,所得函数的一个对称中心为($\frac{π}{2}$,0),则a的值为( )
| A. | $\sqrt{3}$ | B. | -1 | C. | 1 | D. | -$\frac{\sqrt{3}}{3}$ |
5.“x≥1”是“lgx≥1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |