题目内容
19.| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}$+1 |
分析 连接AF1,根据△F2AB是等边三角形可知∠AF2B=60°,F1F2是圆的直径可表示出|AF1|、|AF2|,再由双曲线的定义可得$\sqrt{3}$c-c=2a,从而可求双曲线的离心率.
解答 解:连接AF1,则∠F1AF2=90°,∠AF2B=60°
,
∴|AF1|=c,|AF2|=$\sqrt{3}$c,
∴$\sqrt{3}$c-c=2a,
∴e=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1,
故选:D.
点评 本题主要考查了双曲线的简单性质.考查了学生综合分析问题和数形结合的思想的运用,属基础题.
练习册系列答案
相关题目
9.有10件产品,其中3件是次品,从这10件产品中任取两件,用ξ表示取到次品的件数,则E(ξ)等于( )
| A. | $\frac{3}{5}$ | B. | $\frac{8}{15}$ | C. | $\frac{14}{15}$ | D. | 1 |
7.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{3}{4}$x,且其右焦点F2(5,0),则双曲线C的方程为( )
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 |
4.a,b为直线,α,β为平面,下列正确的是( )
| A. | 若a∥α,a∥β,则α∥β | B. | 若a∥α,b⊆α,则a∥b | C. | 若a∥α,a⊆β,则α∥β | D. | 若a⊥α,a⊆β,则α⊥β |