题目内容

已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中的最大面积是(  )
A、6
B、8
C、2
5
D、3
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,分别计算出四个侧面的侧面积,可得答案.
解答: 解:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,
后面是等腰三角形,腰为3,所以后面的三角形的高为:
32-22
=
5

所以后面三角形的面积为:
1
2
×4×
5
=2
5

两个侧面面积为:
1
2
×2×3=3,
前面三角形的面积为:
1
2
×4×
5
2
+22
=6,
四棱锥P-ABCD的四个侧面中面积最大的是前面三角形的面积:6.
故选:A.
点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网