题目内容

下列关于正弦定理的叙述或变形中错误的是(  )
A、在△ABC中,a:b:c=sinA:sinB:sinC
B、在△ABC中,a=b?sin2A=sin2B
C、△ABC中:
a
sinA
=
b+c
sinB+sinC
D、△ABC中,正弦值较大的角所对的边也较大
考点:正弦定理
专题:解三角形
分析:在△ABC中,由正弦定理可得 a=2rsinA,b=2rsingB,c=2rsinC,结合大边对大角,判断各个选项是否成立,从而得出结论.
解答: 解:在△ABC中,由正弦定理可得 a=2rsinA,b=2rsingB,c=2rsinC,
故有a:b:c=sinA:sinB:sinC,故A成立.
故有a=b,等价于sinA=sinB,故B不成立.
再根据比例式的性质可得C成立.
根据大边对大角,可得D成立,
故选:B.
点评:本题主要考查正弦定理的应用,大边对大角,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网