题目内容
10.4位同学各自在阳光体育时间活动,可以选择足球和篮球两项运动中一项,则这两项活动都有同学选择的概率为( )| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{7}{8}$ |
分析 先求出基本事件总数,由此利用对立事件概率计算公式能求出这两项活动都有同学选择的概率.
解答 解:4位同学各自在阳光体育时间活动,可以选择足球和篮球两项运动中一项,
基本事件总数n=24=16,
这两项活动都有同学选择的概率为:
p=1-$\frac{{1}_{\;}^{\;}}{{2}^{4}}$-$\frac{1}{{2}^{4}}$=$\frac{7}{8}$.
故选:D.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
练习册系列答案
相关题目
1.已知点F1,F2为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点,若椭圆上存在点P使得$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,则此椭圆的离心率的取值范围是( )
| A. | (0,$\frac{1}{3}$) | B. | (0,$\frac{1}{2}$] | C. | ($\frac{1}{3}$,$\frac{1}{2}$] | D. | [$\frac{1}{3}$,1) |
5.变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,则目标函数z=x+3y的最小值为( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
15.某班有男、女优秀少先队员各2名,现需选出2名优秀少先队员到社区做公益宣传活动,则选出的两名队员性别相同的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |