题目内容

18.设不等式组$\left\{{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\end{array}}\right.$表示的平面区域为D,在区域D内随即取一点,则此点到坐标原点的距离小于或等于2的概率是$\frac{π}{4}$.

分析 根据题意,在区域D内随机取一个点P,则P点到坐标原点的距离小于2时,点P位于图中正方形OABC内,且在扇形OAC的内部,如图中的扇形部分.因此算出图中扇形部分面积,再除以正方形OABC面积,即得本题的概率.

解答 解:到坐标原点的距离小于2的点,位于以原点O为圆心、半径为2的圆内,
区域D:不等式组$\left\{{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\end{array}}\right.$表示正方形OABC,(如图)
其中O为坐标原点,A(2,0),B(2,2),C(0,2).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,
且在扇形OAC的内部,如图中的扇形部分
∵S正方形OABC=22=4,S扇形=$\frac{1}{4}$π•22
∴所求概率为P=$\frac{{S}_{扇形}}{{{S}_{正方形OABC}}_{\;}}$=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离小于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网