题目内容

9.已知等比数列{an}的各项都为正数,其前n项和为Sn,且a1+a7=9,a4=2$\sqrt{2}$,则S8=(  )
A.15(1+$\sqrt{2}$)B.15(1+$\frac{\sqrt{2}}{2}$)C.15($\sqrt{2}$-1)或15(1-$\frac{\sqrt{2}}{2}$)D.15(1+$\sqrt{2}$)或15(1+$\frac{\sqrt{2}}{2}$)

分析 由已知a1,a7分别是方程x2-9x+8=0的两根,由此解方程求出a1,a7,再利用等比数列通项公式求出首项与公比,由此能求出结果.

解答 解:∵等比数列{an}的各项都为正数,其前n项和为Sn,且a1+a7=9,a4=2$\sqrt{2}$,
∴由${a_4}=2\sqrt{2}$,得${a_1}{a_7}={a_4}^2=8$.
∴a1,a7分别是方程x2-9x+8=0的两根.
解得$\left\{\begin{array}{l}{a_1}=1\\{a_7}=8\end{array}\right.$或$\left\{\begin{array}{l}{a_1}=8\\{a_7}=1.\end{array}\right.$,
∵等比数列{an}的各项都为正数,∴公比q>0.
当$\left\{\begin{array}{l}{a_1}=1\\{a_7}=8\end{array}\right.$时,$q=\sqrt{[}6]{{\frac{a_7}{a_1}}}=\sqrt{2}$,
∴${S_8}=\frac{{1×[{1-{{({\sqrt{2}})}^8}}]}}{{1-\sqrt{2}}}=15({1+\sqrt{2}})$;
当$\left\{\begin{array}{l}{a_1}=8\\{a_7}=1.\end{array}\right.$时,$q=\sqrt{[}6]{{\frac{a_7}{a_1}}}=\frac{{\sqrt{2}}}{2}$,
∴${S_8}=\frac{{8×[{1-{{({\frac{{\sqrt{2}}}{2}})}^8}}]}}{{1-\frac{{\sqrt{2}}}{2}}}=15({1+\frac{{\sqrt{2}}}{2}})$.
故选:D.

点评 本题考查等比数列的前8项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网