题目内容

7.从混有5张假钞的20张一百元纸币中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率为(  )
A.$\frac{1}{19}$B.$\frac{17}{18}$C.$\frac{4}{19}$D.$\frac{2}{17}$

分析 设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,所求的概率即 P(A/B).先求出P(AB)和P(B)的值,再根据P(A/B)=$\frac{P(AB)}{P(B)}$,运算求得结果.

解答 解:解:设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,
则所求的概率即 P(A|B).
又P(AB)=P(A)=$\frac{{C}_{5}^{2}}{{C}_{20}^{2}}$,P(B)=$\frac{{C}_{5}^{2}+{C}_{5}^{1}{C}_{15}^{1}}{{C}_{20}^{2}}$,
由公式P(A|B)=$\frac{P(AB)}{P(B)}$=$\frac{{C}_{5}^{2}}{{C}_{5}^{2}+{C}_{5}^{1}{C}_{15}^{1}}$=$\frac{10}{10+75}$=$\frac{2}{17}$.
故选:D.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网