题目内容
7.从混有5张假钞的20张一百元纸币中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率为( )| A. | $\frac{1}{19}$ | B. | $\frac{17}{18}$ | C. | $\frac{4}{19}$ | D. | $\frac{2}{17}$ |
分析 设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,所求的概率即 P(A/B).先求出P(AB)和P(B)的值,再根据P(A/B)=$\frac{P(AB)}{P(B)}$,运算求得结果.
解答 解:解:设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,
则所求的概率即 P(A|B).
又P(AB)=P(A)=$\frac{{C}_{5}^{2}}{{C}_{20}^{2}}$,P(B)=$\frac{{C}_{5}^{2}+{C}_{5}^{1}{C}_{15}^{1}}{{C}_{20}^{2}}$,
由公式P(A|B)=$\frac{P(AB)}{P(B)}$=$\frac{{C}_{5}^{2}}{{C}_{5}^{2}+{C}_{5}^{1}{C}_{15}^{1}}$=$\frac{10}{10+75}$=$\frac{2}{17}$.
故选:D.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率的合理运用.
练习册系列答案
相关题目
17.定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)至少有6个零点,则a的取值范围是( )
| A. | (0,$\frac{\sqrt{2}}{2}$) | B. | (0,$\frac{\sqrt{3}}{3}$) | C. | (0,$\frac{\sqrt{5}}{5}$) | D. | (0,$\frac{\sqrt{6}}{6}$) |
15.函数f(x)=-$\frac{1}{x}$+cos(2x+$\frac{2π}{3}$)的一个零点所在的区间可以是( )
| A. | (0,$\frac{π}{2}$) | B. | ($\frac{π}{2},\frac{2π}{3}$) | C. | ($π,\frac{7π}{6}$) | D. | ($\frac{4π}{3},\frac{7π}{6}$) |
19.P是△ABC内一点,△ACP,△BCP的面积分别记为S1,S2,已知$\overrightarrow{CP}=\frac{2λ}{3}\overrightarrow{CA}+\frac{λ}{3}\overrightarrow{CB}$,其中λ∈(0,1),则$\frac{S_1}{S_2}$=( )
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
17.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如表所示:
试运用独立性检验的思想方法分析:能否有99.5%的把握认为学生的学习积极性与对待班级工作的态度有关系?说明理由.
| 积极参加班级工作 | 不太积极参加班级工作 | 合计 | |
| 学习积极性高 | 18 | 7 | 25 |
| 学习积极性一般 | 6 | 19 | 25 |
| 合计 | 24 | 26 | 50 |