ÌâÄ¿ÄÚÈÝ
10£®Ï±íÌṩÁËij³§½ÚÄܽµºÄ¼¼Êõ¸ÄÔìºóÉú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö£©±ê׼úµÄ¼¸×é¶ÔÕÕÊý¾Ý£º| x | 3 | 4 | 5 | 6 | 7 | 8 |
| y | 2.5 | 3 | 4 | 4.5 | 5.22 | 5.97 |
£¨2£©ÔÚÎó²î²»³¬¹ý0.05µÄÌõ¼þÏ£¬ÀûÓÃx=7ʱ£¬x=8À´¼ìÑ飨1£©ËùÇ󻨹éÖ±ÏßÊÇ·ñºÏÊÊ£»
£¨3£©ÒÑÖª¸Ã³§¼¼Êõ¸ÄÔìǰ100¶Ö¼×²úÆ·ÄܺÄΪ90¶Ö±ê׼ú£¬ÊÔ¸ù¾Ý£¨1£©Çó³öµÄÏßÐԻع鷽³Ì£¬Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼Êõ¸ÄÔìǰ½µµÍ¶àÉÙ¶Ö±ê׼ú£¿
£¨²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-b$\overline{x}$£©
·ÖÎö £¨1£©¸ù¾Ý±í¸ñ·Ö±ðÇó³öx£¬yµÄƽ¾ùÊý£¬Çó³öϵÊý$\widehat{b}$£¬$\widehat{a}$µÄÖµ£¬Çó³ö»Ø¹é·½³Ì¼´¿É£»
£¨2£©·Ö±ð½«x=7£¬8´úÈë·½³ÌÇó³ö½á¹ûÅжϼ´¿É£»
£¨3£©½«xµÄÖµ´úÈë½âÎöʽ¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©$\overline{x}$=4.5£»$\overline{y}$=3.5
$\stackrel{¡Ä}{b}$=$\frac{3.5}{5}$=0.7£¬$\widehat{a}$=0.35£¬
ËùÒÔ$\stackrel{¡Ä}{y}$=0.7x+0.35£¬
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬
µ±x=7ʱ£¬y=5.25£¬5.25-5.22=0.03£¼0.05
µ±x=8ʱ£¬y=5.95£¬5.97-5.95=0.02£¼0.05
ËùÒÔ£¬´Ë»Ø¹éÖ±Ïß·ûºÏÌõ¼þ£»
£¨3£©ÓÉ£¨1£©¿ÉÖª£¬µ±x=100ʱ£¬y=70.35£¨¶Ö£©
ËùÒÔ£¬½µµÍÁË90-70.35=19.65¶Ö£®
µãÆÀ ±¾Ì⿼²éÁ˻ع鷽³ÌÎÊÌâÒÔ¼°»Ø¹é·½³ÌµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®Ä³°à¼¶Òª´ÓËÄÃûÄÐÉú¡¢Á½ÃûÅ®ÉúÖÐÑ¡ÅÉËÄÈ˲μÓij´ÎÉçÇø·þÎñ£¬ÔòËùÑ¡µÄËÄÈËÖÐÖÁÉÙÓÐÒ»ÃûÅ®ÉúµÄÑ¡·¨Îª£¨¡¡¡¡£©
| A£® | 14 | B£® | 8 | C£® | 6 | D£® | 4 |
18£®Å×ÎïÏßy2=64xµÄ×¼Ïß·½³ÌΪ£¨¡¡¡¡£©
| A£® | x=8 | B£® | x=-8 | C£® | x=-16 | D£® | x=16 |
5£®ÏÂÁк¯ÊýÖУ¬×îСֵΪ2µÄº¯ÊýÊÇ£¨¡¡¡¡£©
| A£® | y=x+$\frac{1}{x}$ | B£® | y=sin¦È+$\frac{1}{sin¦È}$£¨0£¼¦È£¼$\frac{¦Ð}{2}$£© | ||
| C£® | y=sin¦È+$\frac{1}{sin¦È}$£¨0£¼¦È£¼¦Ð£© | D£® | $\frac{1}{{\sqrt{{x^2}+2}}}+\sqrt{{x^2}+2}$ |
19£®¹ýÅ×ÎïÏßy2=4xµÄ½¹µãÇÒÓëxÖá´¹Ö±µÄÖ±Ïß½»Ë«ÇúÏß${x^2}-\frac{y^2}{3}=1$µÄÁ½Ìõ½¥½üÏßÓÚA¡¢BÁ½µã£¬ÔòAB=£¨¡¡¡¡£©
| A£® | $\frac{{4\sqrt{3}}}{3}$ | B£® | $2\sqrt{3}$ | C£® | 6 | D£® | $4\sqrt{3}$ |