题目内容
6.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,则z的最大值为9.分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.
解答 解:作出不等式组对应的平面区域如图:
由z=3x-y得y=3x-z,
平移直线y=3x-z由图象可知
当直线y=3x-z经过点D(3,0)时,直线y=3x-z的截距最小,
此时z最大.![]()
此时z=3×3=9,
故答案为:9
点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
17.已知双曲线Γ1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,椭圆Γ2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{6}$=1的离心率为e,直线MN过F2与双曲线交于M,N两点,若cos∠F1MN=cos∠F1F2M,$\frac{|{F}_{1}M|}{|{F}_{1}N|}$=e,则双曲线Γ1的两条渐近线的倾斜角分别为( )
| A. | 30°或150° | B. | 45°或135° | C. | 60°或120° | D. | 15°或165° |
1.设复数z=-7+5i(是虚数单位),z的共轭复数为$\overline{z}$,则复数(6+z)•$\overline{z}$的虚部为( )
| A. | -30 | B. | 30 | C. | 32 | D. | -32 |