题目内容

2.在△ABC中,若acosC+ccosA=bsinB,则此三角形为(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

分析 由已知以及正弦定理可知sinAcosC+sinCcosA=sin2B,化简可得sinB=sin2B,结合B的范围可求B=$\frac{π}{2}$,从而得解.

解答 解:在△ABC中,由acosC+ccosA=bsinB以及正弦定理可知,
sinAcosC+sinCcosA=sin2B,
即sin(A+C)=sinB=sin2B.
∵0<B<π,sinB≠0,
∴sinB=1,B=$\frac{π}{2}$.
所以三角形为直角三角形.
故选:C.

点评 本题主要考查了正弦定理,两角和的正弦函数公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网