题目内容
17.某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩如表所示:| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 92 | 81 |
| 序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
| 数学成绩优秀 | 数学成绩不优秀 | 合计 | |
| 物理成绩优秀 | 5 | 2 | 7 |
| 物理成绩不优秀 | 1 | 12 | 13 |
| 合计 | 6 | 14 | 20 |
分析 (1)根据科成绩在85分以上(含85分),则该科成绩为优秀,结合表格中的数据,即可得2×2列联表;
(2)利用列联表中的数据,利用公式求出Χ2,再与提供的临界值比较,即可得结论.
解答 解:(1)2×2列联表为(单位:人):
| 数学成绩优秀 | 数学成绩不优秀 | 合计 | |
| 物理成绩优秀 | 5 | 2 | 7 |
| 物理成绩不优秀 | 1 | 12 | 13 |
| 合计 | 6 | 14 | 20 |
(2)根据列联表可以求得Χ2=$\frac{20×(5×12-1×2)^{2}}{6×14×7×13}$≈8.802>6.635(15分)
因此有99%的把握认为学生的数学成绩与物理成绩之间有关系.(16分)
点评 本题以实际问题为载体,考查独立性检验的应用,考查列联表及Χ2的计算,属于基础题.
练习册系列答案
相关题目
8.已知数列{an}满足an+1=an-an-1(n≥2,且n∈N),a1=a,a2=b,记Sn=a1+a2+…+an,则下列选项中正确的是( )
| A. | a100=-a,S100=2b-a | B. | a100=-b,S100=2b-a | ||
| C. | a100=-b,S100=b-a | D. | a100=-a,S100=b-a |
5.已知A,B,C 是平面上不共线的三点,O是△ABC的重心,动点P满足$\overrightarrow{OP}$=$\frac{1}{3}$($\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+2$\overrightarrow{OC}$),则点P一定为三角形ABC的( )
| A. | AB边中线的中点 | B. | AB边中线的三等分点(非重心) | ||
| C. | 重心 | D. | AB边的中点 |
2.在△ABC中,若acosC+ccosA=bsinB,则此三角形为( )
| A. | 等边三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
7.已知函数$f(x)=\frac{e^x}{{{e^x}+1}}$,{an}为等比数列,an>0且a1009=1,则f(lna1)+f(lna2)+…+f(lna2017)=( )
| A. | 2007 | B. | $\frac{1}{1009}$ | C. | 1 | D. | $\frac{2017}{2}$ |