题目内容

14.若 x,y 满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,则 z=y-2x 的最大值为(  )
A.8B.4C.1D.2

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$作出可行域如图,

化目标函数 z=y-2x 为y=2x+z,由图可知,当直线y=2x+z过点A(-2,0)时,直线在y轴上的截距最大,
z有最大值为z=0-2×(-2)=4.
故选:B.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法与数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网