题目内容
5.已知集合A={x|a-1<x<2a+1},函数f(x)=ax+b(a≠0),且f(2x+1)=4x+1.(1)求f(x);
(2)若集合B={x|1<f(x)<3},且B⊆A,求实数a的取值范围.
分析 (1)利用代入法,即可求f(x);
(2)化简集合B,利用B⊆A,建立不等式,即可求实数a的取值范围.
解答 解:(1)∵函数f(x)=ax+b(a≠0),∴f(2x+1)=2ax+a+b=4x+1
∴$\left\{\begin{array}{l}{2a=4}\\{a+b=1}\end{array}\right.$,∴a=2,b=-1,
∴f(x)=2x-1;
(2)集合B={x|1<f(x)<3}={x|1<2x-1<3={x|1<x<2},
∵B⊆A,
∴$\left\{\begin{array}{l}{a-1≤1}\\{2a+1≥2}\end{array}\right.$,
∴$\frac{1}{2}≤a≤2$.
点评 本题考查函数解析式的求解,考查集合的关系,属于中档题.
练习册系列答案
相关题目
15.将函数y=cos(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位后,得到f(x)的图象,则( )
| A. | f(x)=-sin2x | B. | f(x)的图象关于x=-$\frac{π}{3}$对称 | ||
| C. | f($\frac{7π}{3}$)=$\frac{1}{2}$ | D. | f(x)的图象关于($\frac{π}{12}$,0)对称 |
16.已知集合M={x|16-x2≥0},集合N={y|y=|x|+1},则M∩N=( )
| A. | {x|-2≤x≤4} | B. | {x|x≥1} | C. | {x|1≤x≤4} | D. | {x|x≥-2} |
13.函数f(x)=ln(4-x)的定义域为( )
| A. | (-∞,4] | B. | (-∞,4) | C. | (0,4] | D. | (0,4) |
20.
某个几何体的三视图如图(其中正视图中的圆弧是半圆)所示,则该几何体的表面积为( )
| A. | 12+3π | B. | 10+3π | C. | 12+4π | D. | 10+4π |
17.
在三棱柱ABC-A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,且$BE={B_1}E,{C_1}F=\frac{1}{3}C{C_1}$,则异面直线A1E与AF所成角的余弦值为( )
| A. | $-\frac{{\sqrt{2}}}{6}$ | B. | $\frac{{\sqrt{2}}}{6}$ | C. | $-\frac{{\sqrt{2}}}{10}$ | D. | $\frac{{\sqrt{2}}}{10}$ |