题目内容

(理做)已知函数f(x)=sin2x+sinxcosx+
m
2
sin(x+
π
4
)sin(x-
π
4
)

(1)当m=0时,求f(x)在区间[
π
8
4
]
上的取值范围;
(2)当tanα=2时,f(α)=
3
5
,求m的值.
考点:三角函数中的恒等变换应用
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先利用恒等变换把函数关系式转化成正弦型函数,进一步利用定义域求函数的值域.
(2)先把函数变形成简单的形式,进一步利用函数的正切值,求出正弦值和余弦值,最后求出参数m的值.
解答: 解:(1)当m=0时,f(x)=f(x)=sin2x+sinxcosx=
1
2
(sin2x-cos2x)
+
1
2

=
2
2
sin(2x-
π
4
)+
1
2

由于x∈[
π
8
4
]

所以:2x-
π
4
∈[0,
4
]

sin(2x-
π
4
)∈[-
2
2
,1]

f(x)∈[0,
1+
2
2
]

(2)由于f(x)=sin2x+sinxcosx+
m
2
sin(x+
π
4
)sin(x-
π
4
)

=
1
2
[sin2x-(1+
m
2
)cos2x]+
1
2

所以:f(α)=
1
2
[sin2α-(1+
m
2
)cos2α]+
1
2

tanα=2
所以:sin2α=
2tanα
1+tan2α
=
4
5
,cos2α=
1-tan2α
1+tan2α
=-
3
5

由于:f(α)=
3
5

3
5
=
1
2
[
4
5
+(1+
m
2
)]+
1
2

解得:m=-4
点评:本题考查的知识要点:三角函数的恒等变换,利用正弦型函数的定义域求函数的值域,求参数的值.属于基础题型
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网