ÌâÄ¿ÄÚÈÝ
9£®£¨¢ñ£©Èô¹ýµã£¨0£¬-b£©£¬£¨a£¬0£©µÄÖ±ÏßÓëÔµãµÄ¾àÀëΪ$\sqrt{2}$£¬ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬ÈôÖ±ÏßOP£¬OQµÄбÂÊ´æÔÚ£¬²¢¼ÇΪk1£¬k2£®ÊÔÎÊk1k2ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¸ÃÖµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÔËÓÃÀëÐÄÂʹ«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬½áºÏÍÖÔ²»ù±¾Á¿µÄ¹ØÏµ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÓÉÖ±ÏßOP£ºy=k1x£¬OQ£ºy=k2x£¬ÓëÔ²MÏàÇУ¬ÔËÓÃÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬»¯¼òÕûÀí£¬½áºÏ¶þ´Î·½³ÌµÄΤ´ï¶¨Àí£¬ÔÙÓɵãÂú×ãÍÖÔ²·½³Ì£¬¼ÆËã¼´¿ÉµÃµ½¶¨Öµ£®
½â´ð ½â£º£¨¢ñ£©ÒòΪÀëÐÄÂÊ$e=\frac{{\sqrt{2}}}{2}$£¬ËùÒÔ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬¶øc2=a2-b2£¬
ËùÒÔ$\frac{{{a^2}-{b^2}}}{a^2}=\frac{1}{2}$£¬¼´a2=2b2¢Ù
Éè¾¹ýµã£¨0£¬-b£©£¬£¨a£¬0£©µÄÖ±Ïß·½³ÌΪ$\frac{x}{a}+\frac{y}{-b}=1$£¬
¼´bx-ay-ab=0£¬
ÒòΪֱÏßÓëÔµãµÄ¾àÀëΪ$\sqrt{2}$£¬
ËùÒÔ$\frac{|ab|}{{\sqrt{{a^2}+{b^2}}}}=\sqrt{2}$£¬ÕûÀíµÃ£º$\frac{{{a^2}{b^2}}}{{{a^2}+{b^2}}}=2$¢Ú
ÓÉ¢Ù¢ÚµÃ$\left\{\begin{array}{l}{a^2}=6\\{b^2}=3\end{array}\right.$£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{3}=1$£»
£¨¢ò£©ÒòΪֱÏßOP£ºy=k1x£¬OQ£ºy=k2x£¬ÓëÔ²MÏàÇУ¬
ÓÉÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬¿ÉµÃ$\frac{{|{k_1}{x_0}-{y_0}|}}{{\sqrt{1+{k_1}^2}}}=\frac{{|{k_2}{x_0}-{y_0}|}}{{\sqrt{1+{k_2}^2}}}=\sqrt{2}$£¬
ƽ·½ÕûÀí£¬¿ÉµÃ${k_1}^2£¨2-{x_0}^2£©+2{k_1}{x_0}{y_0}+2-{y_0}^2=0$£¬
${k_2}^2£¨2-{x_0}^2£©+2{k_2}{x_0}{y_0}+2-{y_0}^2=0$£¬
ËùÒÔk1£¬k2ÊÇ·½³Ì${k^2}£¨2-2{x_0}^2£©+2k{x_0}{y_0}+2-{y_0}^2=0$µÄÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
${k_1}{k_2}=\frac{{2-{y_0}^2}}{{2-{x_0}^2}}$£¬
ÒòΪµãR£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬ËùÒÔ$\frac{{{x_0}^2}}{6}+\frac{{{y_0}^2}}{3}=1$£¬
¼´${y_0}^2=3£¨1-\frac{{{x_0}^2}}{6}£©=3-\frac{1}{2}x_0^2$£¬
ËùÒÔ${k_1}{k_2}=\frac{{2-3+\frac{1}{2}x_0^2}}{2-x_0^2}=-\frac{1}{2}$Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÖ±ÏßµÄбÂÊÖ®»ýΪ¶¨ÖµµÄÎÊÌ⣬עÒâÔËÓÃÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{\sqrt{3}}{2}$ | B£® | $\frac{3}{4}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{4}$ |