题目内容

1.记min|a,b|为a、b两数的最小值,当正数x,y变化时,令t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,则t的最大值为$\sqrt{2}$.

分析 由新定义可得t≤2x+y,t≤$\frac{2y}{{x}^{2}+2{y}^{2}}$,(x,y>0),由两式相乘,结合重要不等式,可得t的最大值.

解答 解:由t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,可得
t≤2x+y,t≤$\frac{2y}{{x}^{2}+2{y}^{2}}$,(x,y>0),
即有t2≤$\frac{4xy+2{y}^{2}}{{x}^{2}+2{y}^{2}}$,
由$\frac{4xy+2{y}^{2}}{{x}^{2}+2{y}^{2}}$=$\frac{2(2xy+{y}^{2})}{{x}^{2}+2{y}^{2}}$≤$\frac{2({x}^{2}+{y}^{2}+{y}^{2})}{{x}^{2}+2{y}^{2}}$=2,
可得t2≤2,解得0<t≤$\sqrt{2}$.
可得t的最大值为$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查新定义的理解和运用,考查最值的求法,注意运用不等式的性质和基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网