题目内容
已知函数f(x)=2sin(x+
)cosx.
(Ⅰ)若x∈[0,
],求f(x)的取值范围;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
,b=2,c=3,求cos(A-B)的值.
| π |
| 3 |
(Ⅰ)若x∈[0,
| π |
| 2 |
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
| ||
| 2 |
考点:三角函数中的恒等变换应用,正弦定理
专题:三角函数的图像与性质,解三角形
分析:(Ⅰ)利用三角函数中的恒等变换应用可求得f(x)=sin(2x+
)+
,利用x∈[0,
],可求得2x+
∈[
,
],从而可求得f(x)的取值范围;
(Ⅱ)依题意可求得sin(2A+
)=0,A为锐角,可知A=
,b=2,c=3,利用余弦定理可求得a=
,继而可求得sinB及cosB的值,利用两角差的余弦可得cos(A-B)的值.
| π |
| 3 |
| ||
| 2 |
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
(Ⅱ)依题意可求得sin(2A+
| π |
| 3 |
| π |
| 3 |
| 7 |
解答:
解:(Ⅰ)f(x)=(sinx+
cosx)cosx=sinxcosx+
cos2x
=
sin2x+
cos2x+
=sin(2x+
)+
….(4分)
∵x∈[0,
],
∴2x+
∈[
,
],-
≤sin(2x+
)≤1.
∴f(x)∈[0, 1+
]. ….(7分)
(Ⅱ)由f(A)=sin(2A+
)+
=
,得sin(2A+
)=0,
又A为锐角,故A=
,又b=2,c=3,
∴a2=4+9-2×2×3×cos
=7,解得a=
. ….(10分)
由
=
,得sinB=
,又b<a,从而B<A,cosB=
.
∴cos(A-B)=cosAcosB+sinAsinB=
•
+
•
=
…(14分)
| 3 |
| 3 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
=sin(2x+
| π |
| 3 |
| ||
| 2 |
∵x∈[0,
| π |
| 2 |
∴2x+
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
| ||
| 2 |
| π |
| 3 |
∴f(x)∈[0, 1+
| ||
| 2 |
(Ⅱ)由f(A)=sin(2A+
| π |
| 3 |
| ||
| 2 |
| ||
| 2 |
| π |
| 3 |
又A为锐角,故A=
| π |
| 3 |
∴a2=4+9-2×2×3×cos
| π |
| 3 |
| 7 |
由
| a |
| sinA |
| b |
| sinB |
| ||
|
| 2 | ||
|
∴cos(A-B)=cosAcosB+sinAsinB=
| 1 |
| 2 |
| 2 | ||
|
| ||
| 2 |
| ||
|
5
| ||
| 14 |
点评:本题考查三角函数中的恒等变换应用,考查正弦函数的单调性与值域,考查正弦定理的应用,属于中档题.
练习册系列答案
相关题目