题目内容

17.在△ABC中,角A,B,C所对的边分别似乎a,b,c,且a=2,2cos2$\frac{B+C}{2}$+sinA=$\frac{4}{5}$.
(1)若b=$\frac{5\sqrt{3}}{3}$,求角B;
(2)求△ABC周长l的最大值.

分析 (1)利用倍角公式及三角形内角和定理,诱导公式化简已知可得sinA=cosA-$\frac{1}{5}$,两边平方整理可得:25cos2A-5cosA-12=0,解得cosA,sinA的值,由正弦定理可得sinB的值,从而可求B的值.
(2)由(1)及正弦定理可得:$\frac{2}{\frac{3}{5}}=\frac{b}{sinB}=\frac{c}{sinC}$,从而由三角函数恒等变换的应用化简可求△ABC周长l=2+$\frac{10}{3}$(sinB+sinC)=2+2$\sqrt{10}$sin(B+φ),其中,tanφ=$\frac{1}{3}$,利用正弦函数的性质即可得解.

解答 解:(1)∵2cos2$\frac{B+C}{2}$+sinA=$\frac{4}{5}$,可得:1+cos(B+C)+sinA=$\frac{4}{5}$,
∴sinA=cosA-$\frac{1}{5}$,两边平方整理可得:25cos2A-5cosA-12=0,解得:cosA=$\frac{4}{5}$或-$\frac{3}{5}$.
∴sinA=$\frac{3}{5}$,或-$\frac{4}{5}$(舍去),
∵a=2,b=$\frac{5\sqrt{3}}{3}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\frac{5\sqrt{3}}{3}×\frac{3}{5}}{2}$=$\frac{\sqrt{3}}{2}$,
∴B=$\frac{π}{3}$或$\frac{2π}{3}$.
(2)∵sinA=$\frac{3}{5}$,cosA=$\frac{4}{5}$,a=2,
∴利用正弦定理可得:$\frac{2}{\frac{3}{5}}=\frac{b}{sinB}=\frac{c}{sinC}$=$\frac{10}{3}$,
∴△ABC周长l=a+b+c=2+b+c=2+$\frac{10}{3}$(sinB+sinC)=2+$\frac{10}{3}$(sinB+sin(B+A))
=2+$\frac{10}{3}$(sinB+sinBcosA+cosBsinA)
=2+$\frac{10}{3}$(sinB+$\frac{4}{5}$sinB+$\frac{3}{5}$cosB)
=2+$\frac{10}{3}$($\frac{9}{5}$sinB+$\frac{3}{5}$cosB)
=2+2(3sinB+cosB)
=2+2$\sqrt{10}$sin(B+φ),其中,tanφ=$\frac{1}{3}$.
∴当sin(B+φ)=1时,可得△ABC周长l的最大值为:2+2$\sqrt{10}$.

点评 本题主要考查了倍角公式及三角形内角和定理,诱导公式,正弦定理,三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网