题目内容

6.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则:
(1)△ABC的外接圆方程为(x+1)2+(y-1)2=10;
(2)顶点C的坐标是(-4,0).

分析 设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标.

解答 解::设C(m,n),由重心坐标公式得,三角形ABC的重心为($\frac{2+m}{3}$,$\frac{4+n}{3}$),
代入欧拉线方程得:$\frac{2+m}{3}$-$\frac{4+n}{3}$+2=0,
整理得:m-n+4=0  ①
AB的中点为(1,2),kAB=$\frac{4-0}{0-2}$=-2,
AB的中垂线方程为y-2=$\frac{1}{2}$(x-1),即x-2y+3=0.
联立$\left\{\begin{array}{l}{x-2y+3=0}\\{x-y+2=0}\end{array}\right.$,解得x=-1,y=1.
∴△ABC的外心为(-1,1).
则(m+1)2+(n-1)2=32+12=10,
整理得:m2+n2+2m-2n=8  ②
联立①②得:m=-4,n=0或m=0,n=4.
当m=0,n=4时B,C重合,舍去.
∴顶点C的坐标是(-4,0).
△ABC的外接圆方程为(x+1)2+(y-1)2=10
故答案为:(x+1)2+(y-1)2=10;(-4,0).

点评 本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网