题目内容
6.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则:(1)△ABC的外接圆方程为(x+1)2+(y-1)2=10;
(2)顶点C的坐标是(-4,0).
分析 设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标.
解答 解::设C(m,n),由重心坐标公式得,三角形ABC的重心为($\frac{2+m}{3}$,$\frac{4+n}{3}$),
代入欧拉线方程得:$\frac{2+m}{3}$-$\frac{4+n}{3}$+2=0,
整理得:m-n+4=0 ①
AB的中点为(1,2),kAB=$\frac{4-0}{0-2}$=-2,
AB的中垂线方程为y-2=$\frac{1}{2}$(x-1),即x-2y+3=0.
联立$\left\{\begin{array}{l}{x-2y+3=0}\\{x-y+2=0}\end{array}\right.$,解得x=-1,y=1.
∴△ABC的外心为(-1,1).
则(m+1)2+(n-1)2=32+12=10,
整理得:m2+n2+2m-2n=8 ②
联立①②得:m=-4,n=0或m=0,n=4.
当m=0,n=4时B,C重合,舍去.
∴顶点C的坐标是(-4,0).
△ABC的外接圆方程为(x+1)2+(y-1)2=10
故答案为:(x+1)2+(y-1)2=10;(-4,0).
点评 本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法,是基础的计算题.
练习册系列答案
相关题目
11.设0<a<b,则下列不等式中正确的是( )
| A. | a<b<$\sqrt{ab}$<$\frac{a+b}{2}$ | B. | a<$\sqrt{ab}$<$\frac{a+b}{2}$<b | C. | a<$\sqrt{ab}$<b<$\frac{a+b}{2}$ | D. | $\sqrt{ab}$<a<$\frac{a+b}{2}$<b |
18.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$,若函数y=f2(x)-2bf(x)+b-$\frac{2}{9}$有6个零点,则b的取值范围是( )
| A. | ($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$) | B. | (-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞) | C. | (0,$\frac{1}{3}$)∪($\frac{2}{3}$,1) | D. | ($\frac{2}{9}$,$\frac{7}{9}$) |
1.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\frac{\sqrt{13}}{2}$,则它的渐近线方程为( )
| A. | y=±$\frac{2}{3}$x | B. | y=±$\frac{3}{2}$x | C. | y=±$\frac{9}{4}$x | D. | y=±$\frac{4}{9}$x |