题目内容
等差数列{an}的前n项的和为
,且S5=45,S6=60.
(1)求的通项公式;
(2)若数列
满足bn+1-bn=an(n∉N*),且b1=3设数列{
}的前n项和为Tn,求证:Tn<
.
| 1 |
| 12 |
(1)求的通项公式;
(2)若数列
2
| ||
| 5 |
| 1 |
| bn |
| 3 |
| 4 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)a6=S6-S5=15,由s6=
=60,解得a1=5,再由d=
=2,能求出{an} 的通项公式.
(2)由b2-b1=a1,b3-b2=a2,b4-b3=a3,…,bn-bn-1=an-1,叠加得bn-b1=
=
,所以bn=n2+2n,
=
=
(
-
),由裂项求和法能够证明Tn<
.
| 6(a1+a6) |
| 2 |
| a6-a1 |
| 6-1 |
(2)由b2-b1=a1,b3-b2=a2,b4-b3=a3,…,bn-bn-1=an-1,叠加得bn-b1=
| (a1+an-1)(n-1) |
| 2 |
| (5+2n+1)(n-1) |
| 2 |
| 1 |
| bn |
| 1 |
| n2+2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 4 |
解答:
(1)解:a6=S6-S5=15,由s6=
=60,
解得a1=5,又∵d=
=2,
所以an=2n+3.…4
(2)证明:∵b2-b1=a1,
b3-b2=a2,
b4-b3=a3,
…
bn-bn-1=an-1,
叠加得bn-b1=
=
,
所以bn=n2+2n.…(9分)
∴
=
=
(
-
),
∴Tn=
(1-
+
-
+
-
+…+
-
)=
(1+
-
-
)=
-
(
+
)<
.
∴Tn<
.
| 6(a1+a6) |
| 2 |
解得a1=5,又∵d=
| a6-a1 |
| 6-1 |
所以an=2n+3.…4
(2)证明:∵b2-b1=a1,
b3-b2=a2,
b4-b3=a3,
…
bn-bn-1=an-1,
叠加得bn-b1=
| (a1+an-1)(n-1) |
| 2 |
| (5+2n+1)(n-1) |
| 2 |
所以bn=n2+2n.…(9分)
∴
| 1 |
| bn |
| 1 |
| n2+2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
∴Tn<
| 3 |
| 4 |
点评:本题考查数列通项公式和数列前n项和的求法,证明Tn<
.解题时要认真审题,注意等差数列通项公式的应用和裂项求和法的灵活运用.
| 3 |
| 4 |
练习册系列答案
相关题目