题目内容
12.已知0<a<2,证明:$\frac{1}{a}$+$\frac{4}{2-a}$≥$\frac{9}{2}$.分析 利用$\frac{1}{a}+\frac{4}{2-a}=\frac{1}{2}×(\frac{1}{a}+\frac{4}{2-a})(a+2-a)$=$\frac{1}{2}$(5+$\frac{2-a}{a}+\frac{4a}{2-a}$)$≥\frac{1}{2}(5+2\sqrt{\frac{2-a}{a}×\frac{4a}{2-a}})=\frac{9}{2}$证明.
解答 解:∵0<a<2,∴2-a>0,
∴$\frac{1}{a}+\frac{4}{2-a}=\frac{1}{2}×(\frac{1}{a}+\frac{4}{2-a})(a+2-a)$=$\frac{1}{2}$(5+$\frac{2-a}{a}+\frac{4a}{2-a}$)$≥\frac{1}{2}(5+2\sqrt{\frac{2-a}{a}×\frac{4a}{2-a}})=\frac{9}{2}$
当$\frac{2-a}{a}=\frac{4a}{2-a}$,即a=$\frac{2}{3}$时,取等号
点评 本题考查了综合法证明不等式,解题的关键是构造均值不等式的形式,属于中档题.
练习册系列答案
相关题目
20.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的普丰实验和查理斯实验,受其启发,我们也可以通过设计下面的实验来估计π的值,先请120名同学每人随机写下一个都小于1的正实数对(x,y),再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后在根据统计数m估计π的值,假设统计结果是m=34,那么可以估计π的值为( )
| A. | $\frac{22}{7}$ | B. | $\frac{47}{15}$ | C. | $\frac{51}{16}$ | D. | $\frac{53}{17}$ |
17.圆(x-2)2+y2=4与圆x2+(y-2)2=4在公共弦所对的圆心角是( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{2}$ |
14.函数y=x 2cosx的导数为( )
| A. | y′=2xcosx-x 2sinx | B. | y′=2xcosx+x 2sinx | ||
| C. | y′=x 2cosx-2xsinx | D. | y′=xcosx-x 2sinx |